國立臺中教育大學 105 學年度學士班日間部轉學招生考試

 微積分試題

 微積分試題}

適用學系：數學教育學系二，三年級

考生注意事項：

1．請考生於答案卷非選擇題及非是非題作答區填答並標示題號
2．本考科限用．黑色或藍色之原子筆或鋼筆作答

一，填充題（50\％，每格 5\％）

1．Suppose that $f(x)$ is a function that satisfies the equation $f(s+t)=f(s)+f(t)+s^{2} t+s t^{2}$ for all real numbers s and t ．Suppose also that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=1$ ．Then $f^{\prime}(x)=$ \qquad ．

2．Find the interval I on which the curve $y=\int_{0}^{x} \frac{1}{1+t+t^{2}} d t$ is concave upward． $I=$ \qquad ．

3．Let $R=\{(x, y) \mid 1 \leq x \leq 3,2 \leq y \leq 5\}$ ，and let $\square x \square$ denote the greatest integer function． The integral $\iint_{R} \square x+y \square d A=$ \qquad ．

4．Let $x^{2}+y^{2}=17$ ．Then $\frac{d^{2} y}{d x^{2}}=$ \qquad ．

5．Let $f(x)=\frac{\sqrt{2 x^{2}-81}}{3 x+15}$ ．Then the horizontal asymptotes of the graph of f are \qquad ．

6．The directional derivative of $f(x, y, z)=x \sin (y z)$ at $(1,3,0)$ in the direction of $v=(1,2,3)$ is \qquad ．

7．Calculate $\int_{0}^{1} \frac{2 x}{x^{2}+2 x+1} d x=$ \qquad ．

8．Evaluate $\int_{0}^{\infty} x e^{-2 x} d x=$

9．Evaluate $\lim _{x \rightarrow \frac{\pi^{-}}{2}}\left(x-\frac{\pi}{2}\right) \tan x=$

10．Evaluate $\sum_{k=1}^{\infty} 5\left(\frac{-2}{3}\right)^{2 k-1}=$ \qquad ．

二，計算及證明題（50\％，每題 10\％）

1．Find a function f such that $f^{\prime}(-1)=\frac{1}{2}, f^{\prime}(0)=0$ ，and $f^{\prime \prime}(x)>0$ for all $x \in \square$ ， or prove that such a function cannot exist．

2．Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ ．Find the intervals of convergence for $f(x), f^{\prime}(x)$ ，and $f^{\prime \prime}(x)$ ．

3．Find the length of the arc of $y=\frac{1}{6} x^{3}+\frac{1}{2 x}$ from $x=1$ to $x=2$ ．

4．Find the area of the region D bounded above by the line $y=x$ and below by the circle $x^{2}+y^{2}-2 y=0$ ．

5．If $u=\frac{1}{2}\left(x^{2}+y^{2}\right)$ and $v=\frac{1}{2}\left(x^{2}-y^{2}\right)$ ，with $x>0, y>0$ ．Please express the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ in terms of u and v ．

