國立臺中教育大學 105 學年度學士班日間部轉學招生考試

微積分試題

適用學系:數學教育學系二、三年級

考生注意事項:

請考生於答案卷非選擇題及非是非題作答區填答並標示題號。
五本考科限用黑色或藍色之原子筆或鋼筆作答。

一、填充題(50%,每格5%)

- 1. Suppose that f(x) is a function that satisfies the equation $f(s+t) = f(s) + f(t) + s^2t + st^2$ for all real numbers s and t. Suppose also that $\lim_{x \to 0} \frac{f(x)}{x} = 1$. Then f'(x) =_____.
- 2. Find the interval *I* on which the curve $y = \int_0^x \frac{1}{1+t+t^2} dt$ is concave upward. *I* = _____.
- 3. Let $R = \{(x, y) | 1 \le x \le 3, 2 \le y \le 5\}$, and let x denote the greatest integer function.

The integral $\iint_{R} x + y \ dA =$ _____.

4. Let
$$x^2 + y^2 = 17$$
. Then $\frac{d^2 y}{dx^2} =$ _____.

- 5. Let $f(x) = \frac{\sqrt{2x^2 81}}{3x + 15}$. Then the horizontal asymptotes of the graph of f are _____.
- 6. The directional derivative of $f(x, y, z) = x \sin(yz)$ at (1,3,0) in the direction of v = (1, 2, 3) is _____.
- 7. Calculate $\int_{0}^{1} \frac{2x}{x^2 + 2x + 1} dx =$ _____.

第1頁,共2頁

8. Evaluate
$$\int_0^\infty x e^{-2x} dx =$$
_____.

9. Evaluate
$$\lim_{x \to \frac{\pi}{2}^{-}} (x - \frac{\pi}{2}) \tan x =$$
_____.

10. Evaluate
$$\sum_{k=1}^{\infty} 5(\frac{-2}{3})^{2k-1} =$$
_____.

二、計算及證明題(50%,每題10%)

1. Find a function f such that $f'(-1) = \frac{1}{2}$, f'(0) = 0, and f''(x) > 0 for all $x \in$, or prove that such a function cannot exist.

2. Let
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
. Find the intervals of convergence for $f(x)$, $f'(x)$, and $f''(x)$.

- 3. Find the length of the arc of $y = \frac{1}{6}x^3 + \frac{1}{2x}$ from x = 1 to x = 2.
- 4. Find the area of the region D bounded above by the line y = x and below by the circle $x^2 + y^2 2y = 0$.
- 5. If $u = \frac{1}{2}(x^2 + y^2)$ and $v = \frac{1}{2}(x^2 y^2)$, with x > 0, y > 0. Please express the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ in terms of u and v.

第2頁,共2頁