國立臺中教育大學 99 學年度大學日間部轉學招生考試微積分試題

通用學系：數學教㕕學系二年级

一，填充題（ 40% ，每格 5% ）
1．The derivative of f at x is given by $f^{\prime}(x)=\lim _{h \rightarrow 0}$ \qquad ．Equivalently， $f^{\prime}(x)=\lim _{t \rightarrow x}$ \qquad ．

2．The slope of the tangent line L to the graph of $y=x^{2}$ at the point $(1,1)$ is \qquad ．Moreover，the equation of L is \qquad ．

3．Evaluate $\int_{0}^{1} x e^{-x^{2}} d x=$ \qquad ．

4．Evaluate $\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}=$ \qquad .

5．Let $f(x)=\left\{\begin{array}{cl}x^{2}+a & \text { if } x>-3 \\ 8 & \text { if } x=-3 . \text { Find the values of } a, m, b \text { that make } f \\ m x+b & \text { if } x<-3\end{array}\right.$ differentiable everywhere．$(a, m, b)=$ \qquad ．

6．The length of the curve $y=1+6 x^{3 / 2}, 0 \leq x \leq 1$ is \qquad ．

二，計算及證明題（ 60% ，每題 10\％）
1．Evaluate $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$ ．

2．Find $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} \frac{1+t}{2+t} d t$ ．
3. Find the limit or explain that it does not exist $\lim _{x \rightarrow \infty}|x|^{x}$.
4. Prove that if $\lim _{x \rightarrow c} f(x)=A$ and $\lim _{x \rightarrow c} g(x)=B$, then $\lim _{x \rightarrow c} f(x) g(x)=A B$.
5. Suppose f is an odd function and is differentiable everywhere. Prove that for every positive number b, there exists a number c in $(-b, b)$ such that $f^{\prime}(c)=f(b) / b$.
6. Let $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{array}\right.$.
(a) Find $f_{x}(x, y)$.
(b) Show that f is not differentiable at $(0,0)$.

國立臺中教育大學 99 學年度大學日間部轉學招生考試微積分試題

道用學系：數悬教有學系三年级

一，填充題（ 40% ，每格 5% ）

1．Let $D_{u} f(p)$ be the directional derivative of f at $p=\left(p_{1}, p_{2}\right)$ in the direction $u=\left(u_{1}, u_{2}\right)$ ．Then the definition of $D_{u} f(p)$ is \qquad ．If $f(x, y)=4 x^{2}-x y+3 y^{2}, \quad p=(2,-1)$ and $u=(4,3)$ ，then $D_{u} f(p)=$ \qquad ．

2．Evaluate $\lim _{n \rightarrow \infty} \frac{n+\frac{n}{2}+\frac{n}{3}+\frac{n}{4}+\cdots+1}{n}=$ \qquad .

3．Evaluate $\int_{1}^{3} \frac{1}{4+2^{x}} d x=$ \qquad ．

4．Evaluate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n}{k^{2}+n^{2}}=$ \qquad ．

5．Evaluate $\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right)^{8} \sum_{k=1}^{n} k^{7}=$ \qquad ．

6．The arc of the parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$ is rotated about the y－axis．The area of the resulting surface is \qquad ．

7．The maximum value of the function $f(x)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$ is \qquad ．

二，計算及證明題（ 60% ，每題 10\％）
1．Let $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$ ．Prove that f is continuous．
2. Evaluate $\int_{0}^{\infty} x^{4} e^{-x} d x$.
3. Find the limit or explain that it does not exist $\lim _{x \rightarrow 0} \frac{2(x+1)^{\frac{7}{11}}-2}{x}$.
4. Show that $\tan ^{-1} x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}$.
5. Suppose that f and g are continuous on $[a, b]$ and differentiable on (a, b). Suppose also that $f(a)=g(a)$ and $f^{\prime}(x)<g^{\prime}(x)$ for $a<x<b$. Prove that $f(b)<g(b)$.
6. Prove that if $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}^{2}$ also converges.

