國立臺中教育大學 100 學年度大學日間部轉學招生考試

微積分 試題

適用學系:數學教育學系 二年級

一、填充題(40%,每格5%)

- 1. The curve determined by $y = x^2 + 1$, $0 \le x \le 4$, can be put in parametric form using x as the parameter by writing x =_______, y =______.
- 2. The formula for the length L of the curve x = f(t), y = g(t), $a \le t \le b$, is L =_____.
- 3. Evaluate $\lim_{n\to\infty} \frac{|x|^n}{n!} = \underline{\hspace{1cm}}$
- 4. Evaluate $\lim_{x\to 0} \frac{\tan x}{x} = \underline{\hspace{1cm}}$.
- 6. Evaluate $\lim_{x\to 0} (1-2x)^{1/x} =$ _____.
- 7. Let f'(0) = 1. Find $\lim_{h \to 0} \frac{f(3h) f(-2h)}{h} = \underline{\hspace{1cm}}$.

二、計算及證明題 (60% , 每題 10%)

- 1. Find the volume V generated by revolving the region bounded by the curve $y = 3 x^2$, the y-axis, and the lines y = 1 and y = 2 about the y-axis.
- 2. Let $f(x) = \int_{x}^{x^3+8} \frac{x}{1+\sqrt{t}} dt$. Find f(1) = ?

- 3. A function f is continuous on [a,b] and differentiable on (a,b), and we have f(a) = f(b). Prove that there exists at least one number $c \in (a,b)$, such that f'(c) = 0.
- 4. Find the area of the surface of revolution generated by revolving the curve $y = \sqrt{x}$, $0 \le x \le 4$, about the *x*-axis.
- 5. Is there a number a such that $\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x 2}$ exists? If so, find the value of a and the value of the limit.
- 6. Show that the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .

國立臺中教育大學 100 學年度大學日間部轉學招生考試

微積分 試題

適用學系:數學教育學系 三年級

一、填充題(40%, 每格 5%)

- 1. If $\sum_{k=1}^{\infty} |a_k|$ converges, we say that the series $\sum_{k=1}^{\infty} a_k$ converges ______. Give an example _____ that $\sum_{k=1}^{\infty} |a_k|$ converges.
- 2. Evaluate $\int_0^\infty \frac{\sin x}{x} dx = \underline{\qquad}$
- 3. Evaluate $\lim_{n\to\infty} \left(\frac{n-1}{n+1}\right)^n = \underline{\hspace{1cm}}$.
- 4. Evaluate $\int_{-a}^{a} \sqrt{a^2 x^2} dx =$ ______.
- 5. Evaluate the indefinite integral $\int e^x \sin x \, dx =$ _____.
- 6. If f is a continuous function such that $\int_0^x f(t) dt = xe^{2x} + \int_0^x e^{-t} f(t) dt$ for all x, then f(x) = _____.
- 7. An equation of the tangent plane to the surface $z = y \cos(x y)$ at the point (2,2,2) is ______.

二、計算及證明題 (60%, 每題 10%)

- 1. Show that $\int_0^1 \frac{\ln x}{1-x} = \sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 2. Find $\int_0^{16} \frac{dx}{\sqrt{9+x^2}}$.

- 3. Find the volume of the solid generated by revolving the region bounded by the parabolas $y = x^2$ and $y^2 = 8x$ about the x-axis.
- 4. Find the formula for $\sum_{j=1}^{n} (j+2)(j-5)$.
- 5. For what values of a and b is the following equation true?

$$\lim_{x\to 0} \left(\frac{\sin 2x}{x^3} + a + \frac{b}{x^2} \right) = 0$$

- 6. Let $f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$.
 - (1) Find $f_x(x, y)$.
 - (2) Show that f is not differentiable at (0,0).